
SCI SOCKET - A Fast Socket Implementation over SCI
Version 2

Friedrich Seifert
sfr@foobar-cpa.de

foobar GmbH
Bernsdorfer Str. 210-212

D-09126 Chemnitz, Germany

Hugo Kohmann
hugo@dolphinics.no

Dolphin Interconnect Solutions AS
Olaf Helsets vei 6

NO-0619 Oslo, Norway

Abstract

In this paper we introduce a very low latency implementa-
tion of the Berkeley Sockets interface on top of the Dolphin
SCI interconnect. Average one byte latencies as low as
2.31 microseconds are achieved. To our knowledge, this is
the fastest sockets implementation in terms of latency. SCI
SOCKET combines outstanding performance and seamless
integration with legacy applications. This enables network-
ing applications to transparently exploit the capabilities of
SCI without being modified or even recompiled. We de-
scribe major design decisions regarding transparent inte-
gration with legacy sockets and data transfer protocols.

Keywords— High performance networking, BSD Sockets,
Low latency, SCI, User level communication.

1 Introduction

With link level speed of modern interconnect hardware
being increased, the communication bottleneck is moved
more and more to protocol software. For this reason all
high speed networks provide their own efficient interfaces
and protocols. The low level user space interface for SCI is
called SISCI [1] which provides basic mechanisms to share
memory segments between nodes and to transfer data be-
tween them. There is also a kernel space interface called
GENIF.

On the other hand there is a large number of applica-
tions that make use of legacy protocols such as the TCP/IP
protocol suite to maintain the highest possible degree of
portability. The de-facto standard interface is the Berkeley
Sockets API [2]. Rewriting a mature application to use a
hardware specific API may be unprofitable in many cases.
Also, the same effort is necessary for every new network
that is to be supported.

SCI SOCKET aims to bring together legacy applications
and the low latency SCI communication hardware by pro-
viding a sockets API abstraction layer on top of the low
level SISCI and GENIF interfaces. Special emphasis has
been put on transparent integration with existing software
as well as on achieving highest possible performance.

In this paper we discuss the principal design alternatives
and present the decisions made for the implementation of
SCI SOCKET.

Section 2 presents related achievements that have mo-
tivated and influenced this work. After that we present a
brief introduction to the Dolphin interconnect technology.
After discussing general design questions in section 4 we
will look at implementation details in section 5 and present
performance numbers in section 6. A short summary and
outlook to future enhancements round off the paper.

2 Related Work

SCI SOCKET builds upon results of a number of research
projects in this area. The first of which was FastSock-
ets [3], a stream socket implementation on top of Ac-
tiveMessages [4], a light weight communication protocol
for Myrinet [5]. Later, a stream socket interface for the
SHRIMPmulticomputer was introduced [6]. SOVIA [7] is
user-level socket layer on top of the Virtual Interface Archi-
tecture [8]. A similar approach has been shown for Gigabit
Ethernet in [9]. GMSOCKS [10] describes how standard
Windows sockets can be mapped onto Myrinet while the
TCP/IP stack is replaced by a special buffer management.

Another recent initiative worth mentioning is the Of-
fload Sockets Framework (OSF) [11] for Linux which en-
ables communication over system area networks (SAN)
while bypassing the kernel internal TCP/IP protocol stack.
An example offload protocol is the Socket Direct Procotol
(SDP) for Infiniband [12].

3 Dolphin Interconnect Technology

Dolphin’s interconnect adapter provides a transparent, re-
liable high bandwidth and very low latency connection be-
tween PCI buses based on the ANSI/IEEE 1592-1992 Scal-
able Coherent Interface (SCI) standard [13].

The PCI–SCI adapter is designed to meet the require-
ments for high availability clustering and remote I/O appli-
cations. The programmed, remote memory access (RMA)
feature of the PCI–SCI bridge enables ultra-low latency

1

messaging and low overhead and transparent I/O trans-
fers. PCI bus memory transactions are converted into cor-
responding SCI transactions allowing physically separate
PCI buses to appear as one. This feature allows applica-
tions to send data between system memories without the
use of operating system services, greatly reducing latency
and overhead. A full remote memory write made up of
a request/response pair typically takes 1.4 microseconds.
Pipelined 4 byte write posts account for only 0.21 mi-
croseconds each.

By use of the DMA controller, blocks of memory can
be copied directly between PCI buses in a single copy op-
eration with no need for intermediate buffering in adapter
cards or buffer memories. This feature greatly reduces la-
tency and lowers overhead of data transfers. The DMA
controller supports both read and write operations and is
fully interleaved with RMA operations.

The PCI–SCI bridge has built-in address translation, er-
ror detection and protection mechanisms to support highly
reliable connections.

4 General Design Questions

4.1 Implementation Level

The most important design question for SCI SOCKET was
where to implement it: at kernel level or at user level. Both
approaches have advantages and drawbacks which we dis-
cuss in the following:

Kernel level: The simplest way is to provide an IP-to-
SAN layer that can be used seamlessly in conjunc-
tion with all kernel resident protocols such as TCP or
UDP. While this is the least complex method it allows
for little optimization only, since all higher level pro-
tocols are still part of the communication path. Also,
the underlying hardware might already provide reli-
able transfers.
In contrast to this a sockets-to-SAN layer inside the
kernel can exploit the hardware capabilities much bet-
ter to build an efficient but compliant sockets inter-
face. Advantages are that applications can use the fast
transport transparently, and all kernel-provided func-
tionality such asfork() and select() are sup-
ported natively. This approach is for example used by
the Offload Socket Framework.
The major drawback is that all communication goes
through the kernel and hence involves a user-kernel-
transition (system call). The times needed for sys-
tem calls on Linux have been measured to be below
one microsecond [14, Section 8.3.3]. We considered
this delay relevant in relation to the extremely low
hardware latencies of SCI when we started the SCI
SOCKET development. However, measurements on
recent machines have yielded kernel call times to be
as low as 0.18µsec in the best case.

User level: an implementation at user level enables direct

application to application transfers without kernel in-
tervention. The disadvantage, however, is that some
funtionality normally provided by the kernel must be
reimplemented or simulated at user level. An exam-
ple is the socket port space. Advanced features such
asfork() require special handling, and transparent
integration with existing applications is more difficult.
With this approach it is not possible to create acceler-
ated network file systems residing in the kernel, like it
is with the kernel level implementation.

Conclusion For the sake of achieving the highest per-
formance we decided to implement SCI SOCKET at user
level initially. Actually, we apply a hybrid method as used
by FastSockets andSHRIMPStream Sockets, but all com-
munication takes place at user level. A more detailed de-
scription will be given in section 5.2.2.

The need to support kernel space consumers such as
iSCSI and network file systems led to the development of
a kernel implementation of SCI SOCKET. Surprisingly, it
performs nearly as well as the user level version, on some
platforms even better.

An IP driver for SCI has also been developed [15].

4.2 Transparent integration

For both implementations the question arose how to enable
existing applications to use such sockets. Since relinking
or even recompiling may not be an option for a number of
applications, completely transparent integration has been
an objective from the beginning. In the following we de-
scribe how this has been realized for UNIX-like operating
systems.

In order to divert socket communication, without touch-
ing the application, the sockets API functions must be in-
tercepted. Although it is possible to modify the C library
(at least on Linux) this would be a non-portable and frag-
ile approach, since it would have to be kept in sync with C
library development.

The solution is dynamic linking. Usually all applications
are linked dynamically to the C library, where the sockets
interface is defined. By using the preload mechanisms we
can force the dynamic linker/loader to load a special SCI
SOCKET library before all the other libraries. That library
contains wrapper functions that override the sockets API
functions of the C library. Whenever the application in-
vokes one of those calls the SCI SOCKET library decides
if it will handle the call by itself, pass it on to the C library,
or both.

The SCI Kernel Sockets differ from regular sockets only
in the address family. For SCI User Sockets the com-
plete functionality must be provided by a library at user
level. Therefore the preload library for SCI Kernel Sockets
only intercepts thesocket call to replace AFINET by
AF SCI.

In both cases the preload mechanism can be activated by
specifying the SCI SOCKET library in one of two places:

System wide in the file/etc/ld.so.preload

2

Selective in the environment variableLD PRELOAD

In the cases where the application can be relinked, the
wrapper functions can be skipped by linking it statically to
the SCI SOCKET library.

4.3 Configuration

SCI SOCKET needs to be configured for the cluster it runs
on, in order to properly map IP addresses to SCI hardware
addresses, callednodeids. The mapping is defined by a
simple configuration file containing a host name or IP ad-
dress and the associated SCI nodeid per line.

This is a simple example configuration file:

#host #nodeid
192.168.10.1 8
192.168.10.2 12

Especially if the system wide preload mechanism is
used, it might be desirable to exclude specific applications
from using SCI SOCKET. This can be done by specifying
allowed and forbidden port numbers in a separate config-
uration file. For instance, telnet will hardly benefit from
microsecond latencies, even for users typing really quickly.

Configuration of SCI Kernel Sockets is done through a
utility program that reads the configuration files and passes
the information to the AFSCI driver. This must be once
after loading the driver. The user space SCI SOCKET li-
brary evalutes the file at application startup.

5 Implementation Details

This section gives an insight into the implementation of the
SCI User Sockets and SCI Kernel Sockets. Currently, the
user space version only supports stream sockets.

5.1 SCI Kernel Sockets

SCI Kernel Sockets have been implemented as a new ad-
dress family. Currently, Linux is able to handle 32 address
families where numbers from 27 to 30 are unused. We
have chosen 27 for the newAF SCI address family. Since
AF SCI is compatible toAF INET , only the address fam-
ily parameter of thesocket has to be changed to allow an
application to use the SCI network.

In the following sections we present the data structures
used by SCI Kernel Sockets and how they plug into the
Linux networking subsystem, and describe in brief how the
socket function calls have been implemented.

SCI SOCKET provides two major types of kernel sock-
ets, explicit and tranparent. Explicit SCI sockets live in
their on port space and are unrelated to system TCP or
UDP sockets. However, in this paper we concentrate on
tranparent sockets since they are designed to allow seam-
less integration with existing applications.

5.1.1 Data structures

Linux uses a number of data structures, some of which
are protocol dependent, to implement the socket abstrac-
tion. Every socket is represented by astruct socket .
It is created by the generic socket driver and contains
among others a reference to the associated inode, flags,
state and socket type.proto ops is an essential mem-
ber that points to a set of protocol specific functions, e.g.
bind , connect etc. The membersock is a pointer to a
struct sock . protinfo is a union comprising vari-
ous protocol specific information. SCI Kernel Sockets use
the generic union memberdestruct hook to store a
reference to a SCI specificsci socket t structure.

As one objective of AFSCI is to act completely
transparently with repect to AFINET, every transparent
AF SCI socket has an AFINET socket associated with it,
callednative socket.

For AF SCI sockets of type SOCKSTREAM
sci socket t points to a singlesci conn t structure,
which holds all connection related information, e.g. the
message queue handles. The relations of all the data
structures mentioned so far are illustrated for stream
sockets in figure 1.

struct sock {}

protinfo

native_socket

sciconn

struct socket {}

sock

struct socket {}

sock

proto_ops

scisock_stream_proto_ops

proto_ops
sci_socket_t {}

release
bind
connect

proto_ops
AF_INET

struct sock

AF_INET

sci_conn_t {}

Figure 1: Stream socket data structures

Datagram sockets are connectionless by definition.
However, SCI communication requires that a connection
is set up between the nodes. That is why datagram type
AF SCI sockets use implicit connections. Since a single
datagram socket can communicate with multiple destina-
tions, a list of implicit connections must be maintained.
The data structures for a datagram socket are shown in fig-
ure 2.

5.1.2 Socket Create

The socket creation functionscisock create belongs
to the AFSCI family. Whenever a socket of this fam-
ily is created, the kernel calls that function passing a
pointer to astruct socket . The function creates a
native AF INET socket, alloctes asci socket t and

3

sci_conn_t {} sci_conn_t {} sci_conn_t {}

struct sock {}

protinfo

native_socket

struct socket {}

sock

struct socket {}

sock

proto_ops

proto_ops
sci_socket_t {}

release
bind
connect

proto_ops
AF_INET

struct sock

AF_INET

connections

inode

scisock_dgram_proto_ops

Figure 2: Datagram socket data structures

struct sock structure and links them together as de-
scribed in section 5.1.1. Finally, a set of protocol specific
operations is installed for thestruct socket . The ker-
nel will forward all further operations on the socket, e.g.
bind to one of those functions.

5.1.3 Socket Bind

Transparent AFSCI sockets share the port space with all
system sockets. Therefore the bind operation is first per-
formed on the native sockets. The address assigned by the
system is then retrieved and used for SCI specific address-
ing.

5.1.4 Socket Listen

In transparent mode AFSCI stream sockets can be used to
communicate with other AFSCI sockets as well as with
regular AFINET sockets. Thelisten function ensures
that both kind of connections can be established by calling
listen on the native socket and setting up the mecha-
nism to receive SCI connection requests. A dedicated ker-
nel thread is responsible for handling incoming SCI con-
nection requests in the background.

5.1.5 Socket Connect

Both stream and datagram sockets can be “connected”.
However, the semantics are quite different. While an actual
connection is established for stream sockets, only a remote
address is recorded for datagram sockets, so that a remote
address does not have to be specified for subsequent send
and receive operations.

The behaviour of the connect operation on an AFSCI
socket depends on the configuration of SCI SOCKET. If
the remote node is listed in the node map file and if
the destination port is enabled an SCI connection is at-
tempted. In order to allow a non-blocking connect a

sci conn t structure is allocated, initialized with the re-
mote address and passed to another dedicated kernel thread
that is responsible for establishing the connection. Once
the connection is set up,sci conn t is linked to the
sci socket t structure.

If the remote address is not configured for SCI or if the
SCI connection fails for some reason, the AFSCI driver
falls back to a native connection by callingconnect on
the native socket. When this happens, the SCI related re-
sources are not needed anymore, so they are all freed. In
this case the originalstruct socket and the native
socket are merged. That means that all relevant informa-
tion of the native socket is transfered to the original socket,
including the protocol operations vector. From that time on
the original socket appears as a regular AFINET socket.

5.1.6 Socket Accept

As mentioned in section 5.1.4 a transparent AFSCI socket
is able to accept both SCI and AFINET connections. In or-
der to achieve this the accept function makes use of the poll
mechanism of the native socket to wait for native connec-
tions and SCI connections at the same time. If a native con-
nection is available,accept is called on the native socket.
If there is an SCI connection in the form of asci conn t
structure a newstruct sock and asci socket t are
allocated and linked with thestruct socket that was
passed to theaccept method by the kernel.

5.1.7 Implicit Connections for Datagram Sockets

Datagram support was not completed at the time of writing,
but we present the basic ideas.

Since datagram sockets are connectionless, necessary
SCI connections must be set up implicitely. When
sendmsg is called the driver checks if there is already a
connection to the destination. If not, a connection request
is passed to the connector kernel thread, similarly to the
stream socket connect function. At the receiverrecvmsg
also checks if there is already a matching connection es-
tablished. If not, the mechanism to receive SCI connection
requests is set up. The further handling resembles the ac-
cept function in thatrecvmsg must wait for incoming SCI
connections and for data on the native socket at the same
time. Again, the poll mechanism will be used.

Implicit connections have a limited life time. If a con-
nection has not been used for a certain amount of time, it
is disconnected automatically to save resources.

5.2 SCI User Sockets

5.2.1 Supporting fork()

While FastSockets andSHRIMP Stream Sockets do not
support thefork() system call, and SOVIA presents only
a partial solution requiring modification of the application,
SCI SOCKET aims at providing fully transparentfork()
support. The difficulty is that we have to emulate some
functionality normally provided by the kernel, at user level.

4

Normally, every open file is represented by afile
structure within the kernel. A socket is treated as a spe-
cial file that is linked to a uniquesocket structure. There
is exactly onefile object per open file in the system. The
association of files to processes is done using a per-process
array of pointers tofile structures which are indexed by
the descriptor. We refer to this array asfd array in the
following description. Every time an application passes a
descriptor to a system call, the kernel looks upfd array
to find the correspondingfile structure. Uponfork()
the parent process’sfd array is duplicated for the child
process. Hence, thefd array ’s of parent and child point
to the samefile structures, so they share all files and
sockets.

In order to share SCI SOCKET connections between re-
lated processes, the kernel data structures need to be imi-
tated at user level. This is achieved by a combination of
process-private and process-shared data structures as illus-
trated in figure 3.

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

fd_array fd_array

sci_socket_t sci_socket_t

Parent Child

private memory
duplicated at fork()

shared memory

Figure 3: Sharing SCI sockets

Access to those shared structures must be synchronized
by process-shared locks. Since such primitives are not pro-
vided by LinuxThreads, a combination of spinlock and
pipe is used. Upcoming Pthread implementations for
Linux promise to support process-shared mutexes natively
[16].

The sci socket t structure represents the combina-
tion of the kernel’sfile andsocket structures and are
allocated in shared memory area. Afterfork() both pro-
cesses refer to the same physical memory. In contrast to
this, fd array is allocated in private memory, so that it
is copied duringfork() . Initially both processes own the
same sockets. However, they can alter theirfd array in-
dependently.

5.2.2 Connection Management

As mentioned above SCI SOCKET uses a hybrid
user/kernel level approach in that SCI SOCKET connec-
tions are built upon regular socket connections. This
enables SCI SOCKET among other things to share port
namespace with the system. However, efficient usage of
system wide preloading of the SCI SOCKET library re-
quires that performance impact on applications be kept as
small as possible. In particular, applications that do not
need accelerated sockets should not suffer performance
drops. SCI SOCKET takes this into account by not in-
tercepting sockets API calls until a connection attempt is
made. That means that there is no difference between
a regular socket and an SCI socket, so far.socket() ,
bind() and listen() calls are forwarded to the C li-
brary immediately, only a single function is added to the
call path. Binding the system socket ensures that there can-
not be a regular socket and an SCI socket having the same
port number at any time.

Shadow Connection SetupAccording to the Sock-
ets API the server side next invokesaccept() . SCI
SOCKET intercepts this call as described above, and first
of all calls the original C libraryaccept() function to
establish a connection. So, basic connection setup includ-
ing address matching is left to the system and results in a
new socket descriptor, refered to as shadow socket.

In the same way the client’sconnect() call is inter-
cepted and the C library is called to establish the shadow
connection.

SCI Specific SetupOnce the shadow connection has
been established, still within the SCI SOCKET library in
accept() or connect() , respectively, the server and
the client check if the socket family is AFINET and if the
type is SOCKSTREAM. Furthermore they examine their
respective peer addresses to determine if they are contained
in the configuration file and if the port is enabled. If not, the
calls return to the application and the connection is treated
as a regular one. Otherwise, the corresponding SCI nodeids
are read from the configuration file. If an SCI connection
is made for the first time, the internal SCI SOCKET struc-
tures and threads are initialized. This is what happens: A
so called watcher thread is responsible for detecting remote
connection shutdown byselect() -ing on all shadow
connections. Further, an array ofsci socket t struc-
tures, called socket table, is allocated in (locally) shared
memory.

After the (one time) initialization is done, an entry is
allocated from the socket table at both the server and the
client and added to thefd array using the shadow socket
descriptor as index.

Now, the SCI specific communication channels are set
up. Two antiparallel, unidirectional message queues are
created between the server and the client, and a remote no-
tification mechanism is initiated. The message queues and
applied transfer protocols are covered in section 5.3.

Finally, the sockets on both sides are marked as SCI-
enabled socket and control is returned to the application.

5

5.3 SCILib - Efficient Message Queues

The SISCI API provides all the functionality needed to
communictate over the SCI network. It is a stable and
robust interface, but quite a low-level interface. Under-
standing that there is a need for a interface that is less low-
level Dolphin started developing SCILib, a library on top
of SISCI that offers unidirectional message queues.

SCILib has been chosen as the base of the SCI SOCKET
implementation. The original version of SCILib has been
extended to meet the requirements of high performance
socket communication. This section provides an insight
into the design and implementation of SCILib.

SCILib has also been ported to kernel space using the
GENIF interface to support SCI Kernel Sockets.

5.3.1 Message Queue Realization

An SCILib message queue provides an unidirectional, non-
blocking stream-oriented communication channel using
SCI-shared memory segments. For both ends of the queue
a local SCI segment is created, which the remote process
connects to and maps into its address space. Figure 4 illus-
trates the layout of such a segment.

send buffer
INLINE

send buffer
SHORT

MSG_HEAD

receive buffer
INLINE

receive buffer
LONG
SHORT

MSG_HEAD

localInlBuffPtr

sendBuffPtr

remDataBuffPtr

remInlBuffPtr

remHeadPtr

lMsgSeg

rMsgSeg

localHeadPtr
rMsgSeg

lMsgSeg

remInlBuffPtr

remHeadPtr

localHeadPtr

localInlBuffPtr

localDataBuffPtr

Sender Receiver

Figure 4: SCI segment layout of a message queue

MSG HEAD is structured as shown in figure 5. Most
entries are aligned to be just below a 128 byte boundary,
in order to enable implicit stream buffer1 flushing, when
an entry is written to. The most important elements are
tx andrx , the transmit (tail) and receive (head) pointers
of the ring-like SHORT/LONG receive buffer. The sender
and the receiver each have a copy of MSGHEAD that are
synchronized at certain points in time. Sincetx is mod-
ified only by the sender, andrx only by the receiver, no

1Stream buffers are used by the PCI–SCI bridge to perform write-
combining before an SCI packet is sent over the link. Stream buffer and
SCI packet payload size is 128 byte.

locking is required. For performance reasons the remote
instance of MSGHEAD is never read.

INLINE send and receive buffers are used for a separate
very low latency protocol, while the SHORT send buffer is
for gathering small messages into larger chunks.

128

256

384
state

connected

0

intRequested512

struct msgHeader

version

tx

rx

Figure 5: Structure of MSGHEAD

SCILib offers three different protocols to transfer data
that are described in the following sections.

5.3.2 INLINE Protocol

The INLINE protocol is designed for very low latency
transfers of small messages. The term “INLINE” is de-
rived from the fact that the synchronization information is
sent along with the data in a single SCI transaction. Fig-
ure 6 shows the format of an INLINE message. Its total
size is 128 byte, corresponding to the stream buffer size of
the current SCI hardware. Byte 127 is used for synchro-
nization. Since the SCI adapter always writes from low to
high addresses the synchronization element is written only
after data has landed in memory. Hence, the receiver can
poll atseq to wait for a message.

msg_seq

data116 data52 data4

64 1120 127

n_ack
crc_ack seq

len

crc_data

sync

Figure 6: Structure of an INLINE message

The INLINE messages are kept in ring buffers of equal
size at both the sender and the receiver. The send buffers
are used to assemble the messages, which are then trans-
fered to the corresponding ring buffer element at the re-
ceiver. seq is also used to manage buffer allocation at
the sender. A buffer is available if itsseq equals a spe-
cial valueSEQ8FREE. Every time a new message is sent
the sequence number inseq is incremented and eventu-

6

ally wrapped around. This number is necessary to detect
duplicates caused by retransmissions.

Error checking is optimized for low latency operations
by including a CRC in the message. CRC calculation and
sending the message to the PCI–SCI bridge is a low cost
operation since after having been touched by the applica-
tion the data resides in the CPU cache. Actual sending is
performed by a CPU posted store operation to the local I/O
system. That means that the CPU does not have to wait
for any kind of acknowledge and is immediately free to
do other work. Reliable transfer is ensured by means of
CRC and retransmission.crc data is calculated over the
data portion,msg seq , len andseq . crc ack is cal-
culated only overseq andn ack . Every time a buffer is
transfered, a timestamp is recorded. If a subsequent send
operation does not find an empty send buffer it looks at
all buffers and retransmits them if their resend timeout has
expired.

Once the receiver has seen the next expected sequence
number in the ring buffer it checks the CRC incrc data .
If it is okay theseq field of the corresponding send buffer
is set toSEQ8FREE along with crc ack via a CPU
posted store operation. Since no immediate error check-
ing is done, for performance reasons, this update may fail
completely or data may have been lost without notification
of the sender. In this case the sender will not see the buffer
being freed again and will retransmit it after the timeout
expires. The receiver detects this duplicate by means of
the sequence number. All messages with numbers older
than the next expected number are considered duplicates.
Duplicates are just discarded by setting the sender’sseq
field to SEQ8FREEonce more. The “age” of sequence
numbers is determined using the following expression:

a < b⇔ ((char)((a)− (b)) < 0) (1)

wherea andb are of type unsigned char, and< means “is
older than”.

data116 , data52 and data4 are used to optimize
the copy size by aligning data to the end of the stream
buffer. Table 1 lists the possible message sizes and the cor-
responding offsets and copy sizes.

Message size Offset Member Copy size
1 – 4 112 data4 16

5 – 52 64 data52 64
53 – 116 0 data116 128

Table 1: INLINE Message sizes and offsets

5.3.3 SHORT Protocol

The SHORT protocol has been designed for medium sized
messages and is used for gathering small chunks of data
to be sent as one large message to improve the streaming
throughput. SHORT messages start with a message de-
scriptor containing type (SHORT), length of data and the

message sequence number. The latter is needed to ensure
ordering between SHORT or LONG and INLINE mes-
sages. Data starts immediately after the descriptor. Fig-
ure 7 illustrates the layout.

type dataLen
0
4
8

msgSeq
data

msgDescriptor_t

SHORT

Figure 7: Structure of a SHORT message

To send a SHORT message data is copied into the local
send buffer, the descriptor is set up and the complete mes-
sage is transfered to the remote receive buffer by remote
write operations. One or two copy operations are needed
depending on if the message wraps around the end of the
receive buffer. Send gathering is achieved using the three
internal functions:

startShortMsg() Sets the message type in the send
buffer to MSGTYPE SHORTand copies the data to
the beginning of the send buffer data area.

appendShortMsg() Appends the new data to the send
buffer.

flushShortMsg() Assigns a message number to the
message, sets the data length in the descriptor and per-
forms the SCI copy operation(s).

The SCI copy operations are checked for errors if data
error checking is requested.

After transfering the data the local and remotetx point-
ers in MSGHEAD are updated. The remote write oper-
ation is checked using a so called sequence mechanism if
protocol error checking is enabled. However, explicit pro-
tocol checking can be saved to reduce latency, instead the
caller must regularly kick SCILib to retransmittx from lo-
cal to remote MSGHEAD. The overhead of this is about
0.2µsec and thus negligible.

5.3.4 LONG Protocol

The LONG message protocol is intented to be used for
large messages. The difference from the SHORT protocol
is that data is copied directly to the receive buffer without
an intermediate local copy. As a requirement the source
buffer must be aligned to a 4-byte boundary in order to sat-
isfy SCIMemCpy() . LONG messages are always sent in
two steps, first the message descriptor is copied to the re-
mote buffer, then the data is transfered out of the caller’s
send buffer to the remote receive buffer. Data always starts

7

at the next 128 byte boundary beyond the message descrip-
tor in order to achieve maximum SCI performance. Fig-
ure 8 shows how the LONG messages are structured.

Error checking and protocol information handling is
identical to the SHORT protocol.

type dataLen
0
4
8

msgSeq msgDescriptor_t

LONG

padding

DATA_ALIGN_SIZE
data

Figure 8: Structure of a LONG message

5.3.5 Receiving

The SCILib message queues provide streaming semantics
for data transfers, i.e. the sender and the receiver do not
have to use matching buffer sizes. A receive operation
picks up where the previous one left off. This section ex-
plains how this has been implemented on top of the mes-
sage transfer protocols described above.

SCILReceiveMsgPartial() must be used to get
data from an SCILib message queue. It tries to receive
as much data as possible to the given buffer. The ac-
tual number of bytes received is returned. This operation
is non-blocking. If there is no data available, error code
SCI ERREWOULDBLOCKis returned.

Everytime SCILReceiveMsgPartial() is called
it checks if there is a pending message that has
not been completely read yet by using the struc-
ture pendingMessage t , which is a member of
sci msq queue t :

typedef struct pendingMessage {
unsigned int type;
unsigned int length;
genericMessage_t *msgBuff;
unsigned int rxPos;

} pendingMessage_t;

type is one of the following:

MSG TYPE INVALID No pending message

MSG TYPE INLINE Incompletely received INLINE
message

MSG TYPE MSQ Incompletely received SHORT or
LONG message

If there is no pending message the receiver checks if a
new message is available. There are two sources of mes-
sages, the INLINE receive buffer and the SHORT/LONG

receive buffer. In order to maintain data ordering between
them each message is assigned a unique sequence number
by the sender. The receiver looks for a message with the
next expected sequence number at the head of both buffers.
The type of the message is recorded intype . rxPos
keeps the current receive position within this message and
is initialized to zero.

Once a pending message is available, as much data as
requested, but at most as much as is contained in the current
message, is copied to the caller’s buffer, starting atrxPos .
rxPos is updated according to the amount of data read. If
the current message has been completed,type is set to
MSGTYPE INVALID , and the message is acknowledged.
That means thatrx in MSGHEADis advanced for SHORT
and LONG messages. INLINE send buffers are freed as
described in section 5.3.2.

5.4 Stream Sockets based on SCILib

This section describes how the stream socket communica-
tion using the functionssendmsg() and recvmsg()
has been built on top of SCILib. Other func such as
write[v]() , read[v]() , send() , receive() etc.
are mapped onto these two.

In the following we assume that a connection has already
been established, i.e. there is an SCILib message queue in
each direction.

5.4.1 Sending

The function sendmsg() is passed a pointer to a
struct msghdr structure which describes the data
source as a scatter-gather array using anstruct iovec
structure.

Depending on the message size and the buffer alignment
different transfer protocols are used.

1. If the complete message fits into a single INLINE
message, all iov buffers are copied into a contigu-
ous gather buffer and then sent through the message
queue. Gathering is skipped if only a single iov is
given. Otherwise the iovs are sent one after another.

2. If the current iov buffer is well aligned (at 8 byte
boundary), as much of it as possible is sent. Depend-
ing on that size and on its configuration SCILib will
use the SHORT or the LONG protocol. This step is
repeated until the whole iov has been sent.

3. If the buffer is not well aligned the largest possible
part of it, up to an aligned address, is sent as a SHORT
message since it imposes no alignment restrictions.
The remainder is processed as in step 2.

If the NO DELAY option is set for the socket, data is
transfered immediately. Otherwise the gathering mecha-
nism of SCILib is used to collect small chunks of data into
one large message in order to improve throughput, in anal-
ogy to TCP’s Nagle algorithm [17].

8

5.4.2 Receiving

The function recvmsg() is passed a pointer to
a struct msghdr structure which describes the
data destination as a scatter-gather array using an
struct iovec structure.

The iovs are filled one after another by retriev-
ing data from the receive message queue using
SCILReceiveMsgPartial() . If there is not
enough data available, the calling process is put to sleep
until new data arrives.

5.4.3 Blocking communication

Blocking sockets communiction has been im-
plemented using a combination of polling and
sleep/wake-up based on SCI remote interrupts.
The SCILib functions SCILRequestInt() and
SCILIsRequestedInt() help to reduce the number
of trigger operations. The remote interrupt mechanism
is encapsulated in a separateMBox module. It provides
independent notification channels whereby the target side
can wait for an event explicitely or register a callback
routine, and the initiator side triggers an event. The
implementation details of MBox are beyond the scope of
this document.

If sendmsg() or recvmsg() cannot be completed
since the message queue is full or empty, respectively,
and MSGDONTWAITwas not specified, the calling pro-
cess is delayed until the message queue condition changes.
That delay method is a variable combination of polling and
sleeping, where the time to poll before going to sleep is
configurable. A poll time of zero means immediate sleep-
ing. Oncesendmsg() or recvmsg() have decided to
go to sleep the remote end is informed that it must send a
notification when the buffer status changes. This is done
by calling SCILRequestInt() for the send or receive
message queue, respectively.SCILRequestInt() per-
forms a remote write operation. The process is blocked un-
til it is woken up by the MBox callback. When woken up,
the message queue condition is checked again, and if posi-
tive, the transfer operation is continued after cancelling the
notification request.

A notification is sent throughMBoxduring send and re-
ceive operations every time the message queue status has
been changed and the remote side has asked for notifica-
tion, which is checked bySCILIsRequestedInt() .
That function performs a test on local memory, thus it is
very fast.

6 Performance Evaluation

The hardware platforms used for latency benchmarks are
two dual AMD Opteron 244 servers running at 1800 MHz
and two dual AMD 760MPX based machines with Athlon
MP2600+. Each machine was equipped with a Dolphin
D331 PCI–SCI adapter card running in a 64Bit/66MHz
PCI slot. Gigabit Ethernet results were obtained on

dual Xeon 2.4 GHz machines in conjunction with Intel
82544GC network controllers.

Figure 9 presents the small message one way latency of
SCI SOCKET on both AMD platforms. The Opteron sys-
tems perform best, achieving an average one byte latency
of 2.31µsec. Minimal user latency was found to be 2.26
µsec. Average time for a one byte transfer on the Athlon
machines is 3.19µsec, best case is 2.90µsec.

For comparison, an implementation of the Sockets Di-
rect Protocol over Infiniband is reported to achieve 28µsec
latency for 2 byte messages [18].

The SCI Kernel Sockets results are remarkable as they
show the different behaviour of Opteron and Athlons sys-
tems. On Opterons the kernel socket latency is 0.37µsec
higher than the user socket latency, while on Athlons kernel
sockets beat user sockets by 0.32µsec. We have measured
system call times to be in the range from 0.18 to 0.32µsec
on Opterons and from 0.27 to 0.47µsec on Athlons.

A simple ping-pong test program based onsend() and
recv() was used in these tests.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 4 8 16 32 64 128 256

O
ne

-w
ay

 L
at

en
cy

 in
 M

ic
ro

se
co

nd
s

Message Size in Byte

Small Message Latency of SCI SOCKET

AMD Opteron Kernel
AMD Opteron User

AMD 760MPX Kernel
AMD 760MPX User

Figure 9: Small Message Latency of SCI SOCKET

The graph shows steps at 5, 64 and 128 byte. While
the first two steps result from the copy size optimization
for the INLINE protocol, explained in section 5.3.2, the
third step is caused by switching from INLINE to SHORT
protocol at 117 bytes. The latency for an INLINE message
is dominated by the two necessary remote write operations:
the message from sender to receiver and the acknowledge
back. CRC calculation has only minor influence since there
is nearly no increase to be seen within one copy size step,
i.e. between 1 and 4, 5 and 52, and between 53 and 116.

In addition to our self-made ping-pong test we have used
the Netperf microbenchmark to evaluate SCI SOCKET. We
also ran it on Gigabit Ethernet.

First we present the results for Netperf’s “request-
response” test which is essentially a ping-pong commu-
nication, but performance is reported in transactions per
second. A transaction is defined as the exchange of a sin-
gle request and a single response. Round trip time and one
way latency can be inferred from the transaction rate. The

9

results for SCI SOCKET and Gigabit Ethernet on Opteron
machines are shown in figure 10. SCI User Sockets reach a
sustained transaction rate of about 203800, corresponding
to a one way latency of 2.45µsec. Again, the steps are to
be seen. Gigabit Ethernet results are one order of magni-
tude worse at about 21400 or 23.2µsec. This is where the
Dolphin PCI-SCI bridge in combination with a very low
overhead protocol can bring its potential to bear. SCI Ker-
nel Sockets score about 184800 transactions per second.
Next, we will look at bulk transfers.

 0

 50000

 100000

 150000

 200000

 250000

 1 4 16 64 256 1024 4096 16384 65536

Tr
an

sa
ct

io
n

pe
r S

ec
on

d

Message Size in Byte

Netperf TCP Request/Response results of SCI SOCKET vs. Gigabit Ethernet

SCI SOCKET User
SCI SOCKET Kernel

GigEthernet

Figure 10: Netperf Request/Response Results

Netperf also provides a benchmark to measure unidirec-
tional stream performance where the sender continuously
pushes data over the socket connection and the other side
receives it as fast as possible. The results for the Opteron
systems are shown in figure 11. The maximum stream
bandwidth of SCI User and Kernel Sockets is 186 MB/s,
while user sockets are faster for small message sizes. In the
same tests AMD 760MPX Athlon systems reached transfer
rates of about 253 MB/s (user) and 255 MB/s (kernel).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 32 1024 32768 1.04858e+06 3.35544e+07

B
an

dw
id

th
 in

 M
B

/s
ec

Message Size in Byte

Netperf TCP Stream results of SCI SOCKET vs. Gigabit Ethernet

SCI SOCKET User
SCI SOCKET Kernel

GigEthernet

Figure 11: Netperf Stream Results

7 Summary and Outlook

Our implementation of the BSD sockets API achieves
record breaking low latency by exploiting the capabili-
ties of Dolphin’s PCI–SCI bridge. Its transparent access
semantics to remote memory in combination with CRC
checksums greatly reduce overhead for very small mes-
sages.

Special emphasis has been put on allowing fully trans-
parent integration with existing applications. By using the
preload mechanism of the dynamic loader it is possible to
make applications use the Dolphin SCI interconnect for
socket connections without any change to the code, even
without recompilation or relinking.

SCI supports channel bonding where 2 or more adapter
cards can be used to archieve 2x, 3x or 4x the throughput of
one SCI card. This can be done without sacrificing the low
latency of the memory mapped transfer. SCI SOCKET will
be enhanced to take advantage of this, as well as automatic
fault isolation, if one or more of the multiple connections
fail.

While the current release of SCI SOCKET runs on
Linux only, we are considering porting it to Windows using
Winsock Direct and also to Solaris.

References

[1] “ESPRIT Project 23174 — Software Infrastructure
for SCI (SISCI),” 1998.

[2] Samuel J. Leffler, Marshall Kirk McKusick,
Michael J. Karels, and John S. Quarterman,The
Design and Implementation of the 4.3BSD UNIX
Operating System, Addison-Wesley, 1989.

[3] Steven H. Rodrigues, Thomas E. Anderson, and
David E. Culler, “High-Performance Local-Area
Communication With Fast Sockets,” inProc. of
Winter 1997 USENIX Symposium, January 1997, pp.
257–274.

[4] Thorsten von Eicken, David E. Culler, Seth Copen
Goldstein, and Klaus Erik Schauser, “Active Mes-
sages: A Mechanism for Integrated Communication
and Computation,” in19th International Sympo-
sium on Computer Architecture, Gold Coast, Aus-
tralia, 1992, pp. 256–266.

[5] Nanette J. Boden, Danny Cohen, Robert E. Felder-
man, Alan E. Kulawik, Charles L. Seitz, Jakov N.
Seizovic, and Wen-King Su, “Myrinet: A Gigabit-
per-Second Local Area Network,”IEEE Micro, vol.
15, no. 1, pp. 29–36, 1995.

[6] Stefanos N. Damianakis, Cezary Dubnicki, and Ed-
ward W. Felten, “Stream Sockets on SHRIMP,” in
Communication, Architecture, and Applications for
Network-Based Parallel Computing, 1997, pp. 16–
30.

10

[7] Jin-Soo Kim, Kangho Kim, and Sung-In Jung, “SO-
VIA: A User-level Sockets Layer Over Virtual Inter-
face Architecture,” inProc. of the 2001 IEEE Inter-
national Conference on Cluster Computing (CLUS-
TER’01), Los Angeles, CA, USA, October 2001.

[8] Compaq, Intel and Microsoft Corporations,The Vir-
tual Interface Architecture Specification Version 1.0,
December 1997, Available at http://www.vidf.org.

[9] P. Balaji, P. Shivan, P. Wyckoff, and Dhabaleswar
Panda, “High Performance User Level Sockets over
Gigabit Ethernet,” inProc. 4th IEEE International
Conference on Cluster Computing (Cluster 2002),
Chicago, Illinois, USA, September 23–36 2002.

[10] Markus Fischer, “GMSOCKS - A Direct Sock-
ets Implementation on Myrinet,” inProceedings of
the IEEE Conference on Cluster Computing CLUS-
TER’01, Newport Beach, CA, October 2001.

[11] Intel Corporation, “Offload Sockets Framework and
Sockets Direct Protocol High Level Design, Draft 2,”
June 2002.

[12] InfiniBand Trade Association,InfiniBand Architec-
ture Specification, Release 1.0, October 2000.

[13] Institute of Electrical and Electronics Engineers, New
York, NY, IEEE Standard for the Scalable Coherent
Interface (SCI), ANSI/IEEE Std. 1596-1992 edition,
August 1993.

[14] Intel Corporation, “Linux System Software for the
InfiniBand Architecture,” August 2002.

[15] Dolphin Interconnect Solutions, “IP over SCI,”
http://www.dolphinics.no/products/software/
sci ip.html.

[16] Ingo Molnar Ulrich Drepper, “The Native POSIX
Thread Library for Linux,” Tech. Rep., RedHat, Inc.,
January 2003, http://people.redhat.com/drepper/nptl-
design.pdf.

[17] J. Nagle, “Congestion Control in IP/TCP Internet-
works,” RFC 896, January 1984.

[18] Pavan Balaji, Sundeep Narravula, Karthikeyan
Vaidyanathan, Savitha Krishnamoorthy, Jiesheng
Wu, and D. K. Panda, “Sockets Direct Protocol over
InfiniBand in Clusters: Is it Beneficial?,” inProceed-
ings of the IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS
2004), Austin, Texas, 2004.

11

